1,050 research outputs found

    Temporal shape super-resolution by intra-frame motion encoding using high-fps structured light

    Full text link
    One of the solutions of depth imaging of moving scene is to project a static pattern on the object and use just a single image for reconstruction. However, if the motion of the object is too fast with respect to the exposure time of the image sensor, patterns on the captured image are blurred and reconstruction fails. In this paper, we impose multiple projection patterns into each single captured image to realize temporal super resolution of the depth image sequences. With our method, multiple patterns are projected onto the object with higher fps than possible with a camera. In this case, the observed pattern varies depending on the depth and motion of the object, so we can extract temporal information of the scene from each single image. The decoding process is realized using a learning-based approach where no geometric calibration is needed. Experiments confirm the effectiveness of our method where sequential shapes are reconstructed from a single image. Both quantitative evaluations and comparisons with recent techniques were also conducted.Comment: 9 pages, Published at the International Conference on Computer Vision (ICCV 2017

    Adversarial Example Generation using Evolutionary Multi-objective Optimization

    Full text link
    This paper proposes Evolutionary Multi-objective Optimization (EMO)-based Adversarial Example (AE) design method that performs under black-box setting. Previous gradient-based methods produce AEs by changing all pixels of a target image, while previous EC-based method changes small number of pixels to produce AEs. Thanks to EMO's property of population based-search, the proposed method produces various types of AEs involving ones locating between AEs generated by the previous two approaches, which helps to know the characteristics of a target model or to know unknown attack patterns. Experimental results showed the potential of the proposed method, e.g., it can generate robust AEs and, with the aid of DCT-based perturbation pattern generation, AEs for high resolution images

    Analysis of boron neutron capture reaction sensitivity using Monte Carlo simulation and proposal of a new dosimetry index in boron neutron capture therapy

    Get PDF
    Boron neutron capture therapy is a cellular-scale heavy-particle therapy. The factor determining the biological effects in the boron neutron capture reaction (BNCR) is the value of αboron ⁠, which is the alpha component in the Linear Quadratic (LQ) model. Recently, the factor determining the value of αboron has been revealed to correspond to the structural features of the tumor tissue. However, the relationship and mechanism have yet to be thoroughly studied. In this study, we simulated BNCR in tissues using the Monte Carlo simulation technique and examined the factors that determine the value of αboron ⁠. According to this simulation, the nuclear-cytoplasmic (N/C) ratio, nuclear diameter and heterogeneity of the distribution of boron in the tissue have been suggested to determine the value of αboron ⁠. Moreover, we proposed Biological Effectivity (BE) as a new dosimetry index based on the surviving fraction (SF), extending the concept of absolute biological effectiveness (ABE) in a previous report

    Proteomic analysis of fatty liver induced by starvation of medaka fish larvae

    Get PDF
    When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis.Key words: amino acid catabolism, β-oxidation, triacylglycerol, cholesterol, export
    corecore